
Web development with the Play!
framework

Java web development is fun again

Tomche Delev

Java User Group
Macedonia
www.jug.mk

October 05, 2011

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration

Tomche Delev (JUGMK) Play! Framework October 2011 2 / 36

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration
Tomche Delev (JUGMK) Play! Framework October 2011 3 / 36

Quick overview

Fix the bug and hit reload!
No compile, deploy or restart the server cycle. Edit your
Java files, save, refresh your browser and see the results
immediately!

Efficient template system
A clean template system based on Groovy as an
expression language (template inheritance, includes and
tags)

Full stack
Integration with Hibernate, OpenID, Memcached... And
a plugin system.

Resolve errors quickly
When an error occurs, play shows you the source code
and the exact line containing the problem. Even in
templates.

Tomche Delev (JUGMK) Play! Framework October 2011 4 / 36

Quick overview

Fix the bug and hit reload!
No compile, deploy or restart the server cycle. Edit your
Java files, save, refresh your browser and see the results
immediately!

Efficient template system
A clean template system based on Groovy as an
expression language (template inheritance, includes and
tags)

Full stack
Integration with Hibernate, OpenID, Memcached... And
a plugin system.

Resolve errors quickly
When an error occurs, play shows you the source code
and the exact line containing the problem. Even in
templates.

Tomche Delev (JUGMK) Play! Framework October 2011 4 / 36

Quick overview

Fix the bug and hit reload!
No compile, deploy or restart the server cycle. Edit your
Java files, save, refresh your browser and see the results
immediately!

Efficient template system
A clean template system based on Groovy as an
expression language (template inheritance, includes and
tags)

Full stack
Integration with Hibernate, OpenID, Memcached... And
a plugin system.

Resolve errors quickly
When an error occurs, play shows you the source code
and the exact line containing the problem. Even in
templates.

Tomche Delev (JUGMK) Play! Framework October 2011 4 / 36

Quick overview

Fix the bug and hit reload!
No compile, deploy or restart the server cycle. Edit your
Java files, save, refresh your browser and see the results
immediately!

Efficient template system
A clean template system based on Groovy as an
expression language (template inheritance, includes and
tags)

Full stack
Integration with Hibernate, OpenID, Memcached... And
a plugin system.

Resolve errors quickly
When an error occurs, play shows you the source code
and the exact line containing the problem. Even in
templates.

Tomche Delev (JUGMK) Play! Framework October 2011 4 / 36

Quick overview

Fix the bug and hit reload!
No compile, deploy or restart the server cycle. Edit your
Java files, save, refresh your browser and see the results
immediately!

Efficient template system
A clean template system based on Groovy as an
expression language (template inheritance, includes and
tags)

Full stack
Integration with Hibernate, OpenID, Memcached... And
a plugin system.

Resolve errors quickly
When an error occurs, play shows you the source code
and the exact line containing the problem. Even in
templates.

Tomche Delev (JUGMK) Play! Framework October 2011 4 / 36

Quick overview

Stateless model
Play is a real ”Share nothing” system. Ready for REST,
it is easily scaled by running multiple instances of the
same application on several servers.

Asynchronous
Based on an Non blocking IO model, it allows to create
modern web applications based on long polling and
WebSockets.

Pure Java
Code with Java, use any Java library and develop with
your preferred IDE. Integrates nicely with Eclipse or
NetBeans.

Fun & Productive
Cut out the time you spend waiting for your Java
application to restart, increase your productivity and
complete your projects faster.

Tomche Delev (JUGMK) Play! Framework October 2011 5 / 36

Quick overview

Stateless model
Play is a real ”Share nothing” system. Ready for REST,
it is easily scaled by running multiple instances of the
same application on several servers.

Asynchronous
Based on an Non blocking IO model, it allows to create
modern web applications based on long polling and
WebSockets.

Pure Java
Code with Java, use any Java library and develop with
your preferred IDE. Integrates nicely with Eclipse or
NetBeans.

Fun & Productive
Cut out the time you spend waiting for your Java
application to restart, increase your productivity and
complete your projects faster.

Tomche Delev (JUGMK) Play! Framework October 2011 5 / 36

Quick overview

Stateless model
Play is a real ”Share nothing” system. Ready for REST,
it is easily scaled by running multiple instances of the
same application on several servers.

Asynchronous
Based on an Non blocking IO model, it allows to create
modern web applications based on long polling and
WebSockets.

Pure Java
Code with Java, use any Java library and develop with
your preferred IDE. Integrates nicely with Eclipse or
NetBeans.

Fun & Productive
Cut out the time you spend waiting for your Java
application to restart, increase your productivity and
complete your projects faster.

Tomche Delev (JUGMK) Play! Framework October 2011 5 / 36

Quick overview

Stateless model
Play is a real ”Share nothing” system. Ready for REST,
it is easily scaled by running multiple instances of the
same application on several servers.

Asynchronous
Based on an Non blocking IO model, it allows to create
modern web applications based on long polling and
WebSockets.

Pure Java
Code with Java, use any Java library and develop with
your preferred IDE. Integrates nicely with Eclipse or
NetBeans.

Fun & Productive
Cut out the time you spend waiting for your Java
application to restart, increase your productivity and
complete your projects faster.

Tomche Delev (JUGMK) Play! Framework October 2011 5 / 36

Quick overview

Stateless model
Play is a real ”Share nothing” system. Ready for REST,
it is easily scaled by running multiple instances of the
same application on several servers.

Asynchronous
Based on an Non blocking IO model, it allows to create
modern web applications based on long polling and
WebSockets.

Pure Java
Code with Java, use any Java library and develop with
your preferred IDE. Integrates nicely with Eclipse or
NetBeans.

Fun & Productive
Cut out the time you spend waiting for your Java
application to restart, increase your productivity and
complete your projects faster.

Tomche Delev (JUGMK) Play! Framework October 2011 5 / 36

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration
Tomche Delev (JUGMK) Play! Framework October 2011 6 / 36

Roots and fundamentals

History
Exists since 2008, by Guillaume Bort from Zenexity
Release 1.0 was in October 2009
Current: 1.2.3 (24 Aug 2011) + development tree

Own architectural style
REST as architectural paradigm for resources
URLs are the entry point (and implicit interface) to your
application
Do not work against HTTP (stateless protocol)
Convention over configuration
Only fractions of differences between development and production
mode

Tomche Delev (JUGMK) Play! Framework October 2011 7 / 36

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration
Tomche Delev (JUGMK) Play! Framework October 2011 8 / 36

Play architecture overview

Tomche Delev (JUGMK) Play! Framework October 2011 9 / 36

Play is a lot of glue code

Hibernate (Persistence)
OVal (Validation)
Lucene (Searching)
Google gson (JSON)
Eclipse compiler (Compiling and building)
Apache Commons (FileUpload, HttpClient, Email,
Logging, BeanUtils)
Apache MINA and Asyncweb (Asynchronius
programming)
Ehcache (Caching)
JAMon (Monitoring)
Groovy (Dynamic language)

Tomche Delev (JUGMK) Play! Framework October 2011 10 / 36

Play specialties

No support for servlet API (yes, in a web framework)

Sharing objects via memcached through several
nodes

Everything is UTF-8

Full text indexing with 2 annotations

No anemic domain model - logic is in the object

DAOs and finders are not external

Textmate, Eclipse bundles, also support for IDEA
IntelliJ and NetBeans

Tomche Delev (JUGMK) Play! Framework October 2011 11 / 36

Application layout

Creating a new app
play new myapp

Application structure

. / con f

. / con f / r o u t e s

. / con f / a p p l i c a t i o n . con f

. / con f /messages

. / t e s t

. / l i b

. / p u b l i c

. / app

. / app/models

. / app/ c o n t r o l l e r s

. / app/ v i ews

Tomche Delev (JUGMK) Play! Framework October 2011 12 / 36

Application config file

conf/application.conf
Configure database access

db=fs, db=mem

db=mysql:user:pwd@database name

Any JDBC connection

Specify modules

Supported languages

Logger

memcached setup

mail configuration

mode/system specific settings

Tomche Delev (JUGMK) Play! Framework October 2011 13 / 36

The conf/routes file

Interface contract to the outer world
GET / App l i c a t i o n . i nd e x
GET / u s e r /{ username} App l i c a t i o n . showUser
POST / u s e r Ap p l i c a t i o n . c r e a t eU s e r
DELETE / u s e r /{ username} App l i c a t i o n . d e l e t eU s e r
GET / p u b l i c s t a t i c D i r : p u b l i c

Tomche Delev (JUGMK) Play! Framework October 2011 14 / 36

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration
Tomche Delev (JUGMK) Play! Framework October 2011 15 / 36

Designing a domain model

A simple user
@Entity

public class User extends Model {

@Required

@Column(unique = true)

public String username;

@Required

@Email

public String email;

@Required

public String password;

public void setPassword(String password) {

this.pass = Crypto.passwordHash(pass);

}

}

Tomche Delev (JUGMK) Play! Framework October 2011 16 / 36

The Model class is a helper

Finders and Entity actions
// Query by property

User user = User.find("byUsername", username).first();

// Calls a setter

user.password = "foobar";

user.save();

List <User > users = User.findAll ();

users.get(0).delete ();

// JPA queries are possible as well , so are joins

List <String > names = User.find("select u.username from User u

order by u.username desc").fetch();

Tomche Delev (JUGMK) Play! Framework October 2011 17 / 36

Calling business logic

User controller
public class Application extends Controller {

public static void index () {

List <User > users = User.findAll ();

render(users);

}

public static void showUser(String username) {

User user = User.find("byUsername", username)

.first();

notFoundIfNull(user);

render(user);

}

...

Tomche Delev (JUGMK) Play! Framework October 2011 18 / 36

Calling business logic

User controller (ctd.)
..

public static void deleteUser(String username) {

User user = User.find("byUsername", username).first();

notFoundIfNull(user);

user.delete ();

Application.index();

}

public static void createUser(@Valid User user) {

if (validation.hasErrors ()) {

flash.error("Invalid user data");

Application.index();

}

user = user.save();

Application.showUser(user.username)

}

}

Tomche Delev (JUGMK) Play! Framework October 2011 19 / 36

Calling business logic

Example: Accessing the session
public class AuthController extends Controller {

@Before(unless = "login")

public static void checkSession () {

if (! request.session.contains("username")) {

forbidden("You are not authorized");

}

}

public void login(String username , String password) {

String pass = Crypto.passwordHash(password);

User user = User.find("byUsernameAndPassword",

username , pass).first ();

notFoundIfNull(user);

request.session.put("username", user);

Application.index();

}

}

Tomche Delev (JUGMK) Play! Framework October 2011 20 / 36

The templating system

List users (app/views/Application/index.html)
#{ extends ’main.html’ /}

#{set title : ’Index’ /}

#{list items : users , as: ’user’}

#{a @Application.showUser(user.username)}

${user.username}

#{/a}

with email address ${user.email}

#{/ list}

Tomche Delev (JUGMK) Play! Framework October 2011 21 / 36

The templating system

Add user (createUser.html)
#{form @Application.createUser ()}

<div > Username:

<input type="text" name="user.username" />

</div >

<div > Password :

<input type="pass "name="user.password" / >

</div >

<div > Email:

<input type="text" name="user.email" / >

</ div >

<input type="submit" value="Add user" />

#{/ form }

Tomche Delev (JUGMK) Play! Framework October 2011 22 / 36

The templating system

More tags
doLayout, extends, include

if, ifnot, else, elseif

&’i18nVariable’ out of conf/messages.de

Always access to: session, flash, request, params,
lang, messages, out, play

Tomche Delev (JUGMK) Play! Framework October 2011 23 / 36

The templating system

Extending objects using mixins
public class SqrtExtension extends JavaExtensions {

public static Double sqrt(Number number) {

return Math.sqrt(number.doubleValue ());

}

}

The template code
<div >

Square root of x value is: \${ x.sqrt()}

</div >

Tomche Delev (JUGMK) Play! Framework October 2011 24 / 36

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration
Tomche Delev (JUGMK) Play! Framework October 2011 25 / 36

Testing

Providing test data
YAML formatted file provides testdata

User (Tomche):

- username : tdelev

- password : test

- email : tomche.delev@finki.ukim.mk

Loading test data...
@Before

public void setUp() {

Fixtures.deleteAll ();

Fixtures.load("data.yml");

}

Tomche Delev (JUGMK) Play! Framework October 2011 26 / 36

Testing

Unit tests
Standard junit tests
Extend from UnitTest, which needs a JPA environment

Functional tests
Integration tests
Checks the external responses (http response)

Selenium tests
GUI tests
Very nice controllable, playback recorder
Possibility of doing step-by-step slow debugging

Tomche Delev (JUGMK) Play! Framework October 2011 27 / 36

Testing

CI with Calimoucho
Poor mans hudson

Checks out the project and runs play auto-test,
which needs a graphical layer for selenium tests

Check it under http://integration.playframework.org

Code coverage with cobertura
Enable the cobertura module in application.conf

Run the tests, check the results

Tomche Delev (JUGMK) Play! Framework October 2011 28 / 36

Jobs - being asynchronous

Doing the right thing at the right time
Scheduled jobs (housekeeping)

Bootstrap jobs (initial data providing)

Suspendable requests (rendering a PDF report
without blocking the connection thread pool)

/* @Every ("1h") */

@OnApplicationStart

public class LoadDataJob extends Job {

public void doJob() {

/* .. do whatever you want */

}

}

Tomche Delev (JUGMK) Play! Framework October 2011 29 / 36

Putting play into production

The setup
A redirector like nginx or apache is preferred

Also eliminates the need to serve static files

Redirect to different nodes would be the main task

Profile per nodes possible (very useful for server
farms)

Tomche Delev (JUGMK) Play! Framework October 2011 30 / 36

Monitoring play application

Partial Output of play status

Monitors:

Application.showLatestRecipesRss (), ms. ->

4120 hits; 41.0 avg; 20.0 min; 260.0 max;

/app/views/Application/showLatestRecipesRss.html , ms. ->

4120 hits; 34.9 avg; 19.0 min; 235.0 max;

Datasource:

Job execution pool:

Scheduled jobs:

Tomche Delev (JUGMK) Play! Framework October 2011 31 / 36

Outline

1 Quick overview

2 Roots and funcamentals

3 Play architecture

4 Coding demo

5 Testing

6 Future and integration
Tomche Delev (JUGMK) Play! Framework October 2011 32 / 36

Play 2.0 is on its way

the next major version of Play framework
Brand new build system

More asynchronous features

All native Java and Scala support

More modules through module repository

Tomche Delev (JUGMK) Play! Framework October 2011 33 / 36

Useful modules

Slowly but steadily growing
Scala, Scalate, Akka
PDF, Excel modules
Guice and Spring modules
Netty and Grizzly support
GWT support, GAE support
Extended CSS, SASS
Ivy and Maven support
Siena, Ebean ORM, MongoDB
Database migration module
Hosting: stax, playapps

Tomche Delev (JUGMK) Play! Framework October 2011 34 / 36

TODO

Open issues
NoSQL support (Siena, MongoDB)

Amazon Cloud Integration

Hosting platform (playapps.net has just launched)

Lucene Solr Support for shared environments

Tighter integration with JavaScript Toolkits like
Dojo

Far more modules - check out the rich grails
ecosystem

Tomche Delev (JUGMK) Play! Framework October 2011 35 / 36

Done!

Thanks for listening.
Questions?

Tomche Delev (JUGMK) Play! Framework October 2011 36 / 36

	
	Quick overview
	Roots and funcamentals
	Play architecture
	Coding demo
	Testing
	Future and integration
	

