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Quick overview

Fix the bug and hit reload!
No compile, deploy or restart the server cycle. Edit your
Java files, save, refresh your browser and see the results
immediately!

Efficient template system
A clean template system based on Groovy as an
expression language (template inheritance, includes and
tags)

Full stack
Integration with Hibernate, OpenID, Memcached... And
a plugin system.

Resolve errors quickly
When an error occurs, play shows you the source code
and the exact line containing the problem. Even in
templates.
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Quick overview

Stateless model
Play is a real ”Share nothing” system. Ready for REST,
it is easily scaled by running multiple instances of the
same application on several servers.

Asynchronous
Based on an Non blocking IO model, it allows to create
modern web applications based on long polling and
WebSockets.

Pure Java
Code with Java, use any Java library and develop with
your preferred IDE. Integrates nicely with Eclipse or
NetBeans.

Fun & Productive
Cut out the time you spend waiting for your Java
application to restart, increase your productivity and
complete your projects faster.
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Roots and fundamentals

History
Exists since 2008, by Guillaume Bort from Zenexity
Release 1.0 was in October 2009
Current: 1.2.3 (24 Aug 2011) + development tree

Own architectural style
REST as architectural paradigm for resources
URLs are the entry point (and implicit interface) to your
application
Do not work against HTTP (stateless protocol)
Convention over configuration
Only fractions of differences between development and production
mode
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Play architecture overview
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Play is a lot of glue code

Hibernate (Persistence)
OVal (Validation)
Lucene (Searching)
Google gson (JSON)
Eclipse compiler (Compiling and building)
Apache Commons (FileUpload, HttpClient, Email,
Logging, BeanUtils)
Apache MINA and Asyncweb (Asynchronius
programming)
Ehcache (Caching)
JAMon (Monitoring)
Groovy (Dynamic language)
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Play specialties

No support for servlet API (yes, in a web framework)

Sharing objects via memcached through several
nodes

Everything is UTF-8

Full text indexing with 2 annotations

No anemic domain model - logic is in the object

DAOs and finders are not external

Textmate, Eclipse bundles, also support for IDEA
IntelliJ and NetBeans
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Application layout

Creating a new app
play new myapp

Application structure

. / con f

. / con f / r o u t e s

. / con f / a p p l i c a t i o n . con f

. / con f /messages

. / t e s t

. / l i b

. / p u b l i c

. / app

. / app/models

. / app/ c o n t r o l l e r s

. / app/ v i ews
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Application config file

conf/application.conf
Configure database access

db=fs, db=mem

db=mysql:user:pwd@database name

Any JDBC connection

Specify modules

Supported languages

Logger

memcached setup

mail configuration

mode/system specific settings
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The conf/routes file

Interface contract to the outer world
GET / App l i c a t i o n . i nd e x
GET / u s e r /{ username} App l i c a t i o n . showUser
POST / u s e r Ap p l i c a t i o n . c r e a t eU s e r
DELETE / u s e r /{ username} App l i c a t i o n . d e l e t eU s e r
GET / p u b l i c s t a t i c D i r : p u b l i c
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Designing a domain model

A simple user
@Entity

public class User extends Model {

@Required

@Column(unique = true)

public String username;

@Required

@Email

public String email;

@Required

public String password;

public void setPassword(String password) {

this.pass = Crypto.passwordHash(pass);

}

}
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The Model class is a helper

Finders and Entity actions
// Query by property

User user = User.find("byUsername", username).first();

// Calls a setter

user.password = "foobar";

user.save();

List <User > users = User.findAll ();

users.get(0).delete ();

// JPA queries are possible as well , so are joins

List <String > names = User.find("select u.username from User u

order by u.username desc").fetch();
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Calling business logic

User controller
public class Application extends Controller {

public static void index () {

List <User > users = User.findAll ();

render(users);

}

public static void showUser(String username) {

User user = User.find("byUsername", username)

.first();

notFoundIfNull(user);

render(user);

}

...
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Calling business logic

User controller (ctd.)
..

public static void deleteUser(String username) {

User user = User.find("byUsername", username).first();

notFoundIfNull(user);

user.delete ();

Application.index();

}

public static void createUser(@Valid User user) {

if (validation.hasErrors ()) {

flash.error("Invalid user data");

Application.index();

}

user = user.save();

Application.showUser(user.username)

}

}
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Calling business logic

Example: Accessing the session
public class AuthController extends Controller {

@Before(unless = "login")

public static void checkSession () {

if (! request.session.contains("username")) {

forbidden("You are not authorized");

}

}

public void login(String username , String password) {

String pass = Crypto.passwordHash(password);

User user = User.find("byUsernameAndPassword",

username , pass).first ();

notFoundIfNull(user);

request.session.put("username", user);

Application.index();

}

}
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The templating system

List users (app/views/Application/index.html)
#{ extends ’main.html’ /}

#{set title : ’Index’ /}

<ul>

#{list items : users , as: ’user’}

<li>

#{a @Application.showUser(user.username)}

${user.username}

#{/a}

with email address ${user.email}

</li >

#{/ list}

</ul >
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The templating system

Add user (createUser.html)
#{form @Application.createUser ()}

<div > Username:

<input type="text" name="user.username" />

</div >

<div > Password :

<input type="pass "name="user.password" / >

</div >

<div > Email:

<input type="text" name="user.email" / >

</ div >

<input type="submit" value="Add user" />

#{/ form }
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The templating system

More tags
doLayout, extends, include

if, ifnot, else, elseif

&’i18nVariable’ out of conf/messages.de

Always access to: session, flash, request, params,
lang, messages, out, play
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The templating system

Extending objects using mixins
public class SqrtExtension extends JavaExtensions {

public static Double sqrt(Number number) {

return Math.sqrt(number.doubleValue ());

}

}

The template code
<div >

Square root of x value is: \${ x.sqrt()}

</div >
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Testing

Providing test data
YAML formatted file provides testdata

User (Tomche):

- username : tdelev

- password : test

- email : tomche.delev@finki.ukim.mk

Loading test data...
@Before

public void setUp() {

Fixtures.deleteAll ();

Fixtures.load("data.yml");

}
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Testing

Unit tests
Standard junit tests
Extend from UnitTest, which needs a JPA environment

Functional tests
Integration tests
Checks the external responses (http response)

Selenium tests
GUI tests
Very nice controllable, playback recorder
Possibility of doing step-by-step slow debugging
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Testing

CI with Calimoucho
Poor mans hudson

Checks out the project and runs play auto-test,
which needs a graphical layer for selenium tests

Check it under http://integration.playframework.org

Code coverage with cobertura
Enable the cobertura module in application.conf

Run the tests, check the results
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Jobs - being asynchronous

Doing the right thing at the right time
Scheduled jobs (housekeeping)

Bootstrap jobs (initial data providing)

Suspendable requests (rendering a PDF report
without blocking the connection thread pool)

/* @Every ("1h") */

@OnApplicationStart

public class LoadDataJob extends Job {

public void doJob() {

/* .. do whatever you want */

}

}
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Putting play into production

The setup
A redirector like nginx or apache is preferred

Also eliminates the need to serve static files

Redirect to different nodes would be the main task

Profile per nodes possible (very useful for server
farms)
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Monitoring play application

Partial Output of play status

Monitors:

Application.showLatestRecipesRss (), ms. ->

4120 hits; 41.0 avg; 20.0 min; 260.0 max;

/app/views/Application/showLatestRecipesRss.html , ms. ->

4120 hits; 34.9 avg; 19.0 min; 235.0 max;

Datasource:

Job execution pool:

Scheduled jobs:
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Play 2.0 is on its way

the next major version of Play framework
Brand new build system

More asynchronous features

All native Java and Scala support

More modules through module repository
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Useful modules

Slowly but steadily growing
Scala, Scalate, Akka
PDF, Excel modules
Guice and Spring modules
Netty and Grizzly support
GWT support, GAE support
Extended CSS, SASS
Ivy and Maven support
Siena, Ebean ORM, MongoDB
Database migration module
Hosting: stax, playapps
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TODO

Open issues
NoSQL support (Siena, MongoDB)

Amazon Cloud Integration

Hosting platform (playapps.net has just launched)

Lucene Solr Support for shared environments

Tighter integration with JavaScript Toolkits like
Dojo

Far more modules - check out the rich grails
ecosystem
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Done!

Thanks for listening.
Questions?
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